Intensity of forbidden hyperfine (Delta $\mathrm{m}=2$) transitions in the electron paramagnetic resonance spectra of transition ions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys.: Condens. Matter 41367
(http://iopscience.iop.org/0953-8984/4/5/016)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.159
The article was downloaded on 12/05/2010 at 11:13

Please note that terms and conditions apply.

Intensity of forbidden hyperfine ($\Delta m=2$) transitions in the electron paramagnetic resonance spectra of transition ions

S Subramanian and Cheuk Yin Cheung
Département de Physique, Collège Militaire Royal de Saint-Jean, Saint-Jean-surRichelieu, Québec JoJ 1R0, Canada

Received 25 June 1991, in final form 1 October 1991

Abstract

Expressions are derived for determining the angular variation in the intensity of the forbidden hyperfine transitions ($\Delta M=1, \Delta m= \pm 2$) in the EPR spectra of transition ions. The intensities calculated using these expressions are compared with the predictions of Bleaney and Rubins and of Bir. It is found that third-order contributions arising from the nuclear spin operator as well as the quadrupole term are important in interpreting the intensity of forbidden hyperfine lines.

1. Introduction

In the electron paramagnetic resonance (EPR) spectra of ions of electron spin $S>\frac{1}{2}$ and which also have a hyperfine (HF) structure, a number of extra HF lines are usually observed. These 'forbidden' hF lines correspond to transitions in which the nuclear magnetic quantum number m changes by $\pm 1, \pm 2$, etc, and arise as a result of the admixing of the various nuclear states corresponding to different m-values (Bleaney and Rubins 1961). The importance of the study of forbidden HF transitions lies in the fact that their intensity and line position can be used to determine the spin-spin interaction and, specifically, the nuclear quadrupole interaction (Misra et al 1989). The subject of forbidden HF transitions in EPR has been reviewed by Weil (1987) and the mechanisms responsible for their occurrence and their various applications have been discussed in detail by Misra and Upreti (1987).

Methods for calculating the intensity of the forbidden HF transitions in EPR have been described by Bleaney and Rubins (1961) and Bir (1964). Based on the perturbation method of Bleaney and Rubins (1961), Golding et al (1972) and Subramanian and Misra (1989) have derived expressions for the intensity of the forbidden HF transitions, $\Delta m= \pm 1, \pm 2$. The expressions obtained by these workers as well as by Bleaney and Rubins (1961) contain terms only up to second order. Miaihe and Er. beia (1972) and Mialhe (1979) have used the effective magnetic method of Bir (1964) to derive a modified spin Hamiltonian (SH) in order to interpret the angular variation in the EPR line intensities. The perturbation technique of Bleaney and Rubins (1961) was then applied to the complete SH to obtain expressions, in the form of operators, for calculating the intensity of EPR transitions (Mialhe and Erbeia 1973a,b). It has been pointed out that the complete SH derived by Mialhe and Erbeia (1973a,b) to calculate the intensity of the allowed $\Delta m=0$ and the forbidden $\Delta m=1 \mathrm{HF}$
transitions is incorrect (Subramanian and Cheung 1990), resulting in incorrect expressions for the angular variation in the EPR line intensity. The expression for the forbidden HF $\Delta m=2$ transition derived by Mialhe et al (1977) does not contain the second-order terms of the expression obtained by Bleaney and Rubins (1961). This has prompted us to re-examine the operator expression for the $\Delta m=2$ transition reported by Mialhe et al (1977).

2. Theory

Consider the spin Hamiltonian for an S-state ion:

$$
\begin{equation*}
\mathcal{H}=\mu_{\mathrm{B}} S^{\mathrm{T}} \cdot \mathrm{~g} \cdot B_{0}+S^{\mathrm{T}} \cdot \mathrm{D} \cdot S+S^{\mathrm{T}} \cdot \mathrm{~A} \cdot I+I^{\mathrm{T}} \cdot \mathrm{P} \cdot I \tag{1}
\end{equation*}
$$

In equation (1), μ_{B} is the Bohr magneton, \boldsymbol{B}_{0} is the external Zeeman field, I is the nuclear spin and T represents the transpose. g, D, A and P are, respectively, the electronic g, zero-field, hyperfine and quadrupole sH 'tensors' and are assumed to be anisotropic and have non-collinear principal axes (Abragam and Bleaney 1970).

The intensity of the EPR transition between the eigenstates $\left|M^{\prime}, m\right\rangle$ and $|M, m\rangle$ is given by

$$
\begin{equation*}
\left.\mathrm{I}_{\mathrm{M}, \mathrm{mM} \mathrm{M}^{\prime} \mathrm{m}^{t}}=\mathcal{K}\left|\left\langle M^{\prime}, m^{\prime}\right| \mu_{\mathrm{B}} S^{\mathrm{T}} \cdot \mathrm{~g} \cdot B_{1}\right| M, m\right\rangle\left.\right|^{2} \tag{2}
\end{equation*}
$$

In equation (2) \mathcal{K} is a constant, B_{1} is the amplitude of the excitation microwave field and $|M, m\rangle$ are the eigenfunctions of the SH (1). In the present paper, $|M, m\rangle$ will be determined using perturbation theory (Landau and Lifschitz 1965). This is conveniently done by first quantizing the electron spin S along the $B_{0} \cdot g$ direction (unit vector \dot{z}_{1}), and then quantizing the nuclear spin I along the direction of the effective magnetic field $\boldsymbol{B}_{\text {eff }}$ (unit vector \hat{z}_{2}) which is defined by (Bir 1964, Bir et al 1965)

$$
\begin{equation*}
\langle M| \boldsymbol{S}^{\mathrm{T}} \cdot \mathbf{A} \cdot \boldsymbol{I}|M\rangle=g_{\mathrm{n}}^{-} \mu_{\mathrm{n}}\left(\boldsymbol{B}_{\mathrm{eff}} \cdot \boldsymbol{I}\right) \tag{3}
\end{equation*}
$$

where g_{n}, and μ_{n} are the nuclear g-value and nuclear magneton, respectively. The complete SH can then by written as (Subramanian and Cheung 1990)

$$
\begin{align*}
\mathcal{H}=\mu_{\mathrm{B}} g B_{0} & S_{z 1}+\sigma\left[3 S_{z 1}^{2}-S(S+1)\right]+K_{0} S_{z 1} I_{z 2}+\sigma_{1}\left[3 I_{z 2}^{2}-I(I+1)\right] \\
& -\frac{1}{2} \lambda\left(S_{+} S_{x 1}+S_{z 1} S_{+}+S_{-} S_{x 1}+S_{z 1} S_{-}\right)+\rho\left(S_{+}^{2}+S_{-}^{2}\right) \\
& +S_{1}\left(I_{+}+I_{-}\right)-P\left(S_{+}+S_{-}\right) I_{z 2}+Q\left(S_{+} I_{+}+S_{-} I_{-}\right) \\
& +R\left(S_{+} I_{-}+S_{-} I_{+}\right) \\
& -\frac{1}{2} \lambda_{1}\left(I_{+} I_{z 2}+I_{z 2} I_{+}+I_{-} I_{z 2}+I_{z 2} I_{-}\right)+\rho_{1}\left(I_{+}^{2}+I_{-}^{2}\right) \tag{4}
\end{align*}
$$

In equation (4),

$$
\begin{array}{ll}
\sigma=\frac{1}{6} D\left(3 \cos ^{2} \phi-1\right) & \sigma_{1}=\frac{1}{6} Q^{\prime}\left(3 \cos ^{2} \phi-1\right) \\
\lambda=D \sin \phi \cos \phi & \lambda_{1}=Q^{\prime} \sin \phi \cos \phi \\
\rho=\frac{1}{4} D \sin ^{2} \phi & \rho_{1}=\frac{1}{4} Q^{\prime} \sin ^{2} \phi
\end{array}
$$

$$
\begin{align*}
& P=\left[\left(A^{2}-B^{2}\right) / 2 K\right] \sin \phi \cos \phi+(\lambda / 2 G K M)\left(A^{2} \sin ^{2} \phi+B^{2} \cos ^{2} \phi\right) \\
& \quad \times\left[3 M^{2}-S(S+1)\right] \\
& Q=\frac{1}{4} B(A / K-1) \quad R=\frac{1}{4} B(A / K+1) \\
& S_{1}=(\lambda A B / 2 G K)\left[3 M^{2}-S(S+1)\right] \\
& K_{0}=K+\left[\left(A^{2}-B^{2}\right) D / G K M\right] \sin ^{2} \phi \cos ^{2} \phi\left[3 M^{2}-S(S+1)\right] \\
& g^{2} K^{2}=g_{\|}^{2} A^{2} \cos ^{2} \theta+g_{\perp}^{2} B^{2} \sin ^{2} \theta \\
& D=\frac{3}{2} D_{z z} \quad Q^{\prime}=\frac{3}{2} P_{z z} \quad A=A_{z z} \quad B=A_{x x}=A_{y y} \\
& S_{ \pm}=S_{x 1} \pm \mathrm{i} S_{y 1} \quad I_{ \pm}=I_{x 2} \pm \mathrm{i} I_{y 2} \\
& \tan \phi=\left(g_{\perp} / g_{\|}\right) \tan \theta \quad G=\mu_{\mathrm{B}} g B_{0} \tag{5}
\end{align*}
$$

θ is the angle between the Zeeman field \boldsymbol{B}_{0} and the z principal axis. The $\mathbf{g}, \mathbf{D}, \mathbf{A}$ and \mathbf{P} tensors are axial. Their principal axes coincide with the laboratory axes x, y, z.

The matrix elements of the forbidden HF transitions $\Delta M=1, \Delta m= \pm 2$, calculated using equations (2)-(5) for the case of the excitation field B_{1} perpendicular to the Zeeman field B_{0} are given below.
2.1. Transitions $|M-1, m \pm 2\rangle \leftrightarrow|M, m\rangle$

$$
\begin{align*}
& C_{ \pm}\left[\{ [D ^ { 2 } A ^ { 2 } B ^ { 2 } \operatorname { s i n } ^ { 2 } (2 \phi)] / 3 2 G ^ { 2 } K ^ { 4 } \} \left[\left[3 M^{2}-S(S+1)\right] / M\right.\right. \\
&\left.-\left[3(M-1)^{2}-S(S+1)\right] /(M-1)\right]^{2} \mp\left(D B^{2} / 32 G^{2} K\right)\left(A^{2} / K^{2}+1\right) \\
& \times \sin ^{2} \phi\left[\left[3 M^{2}-S(S+1)\right] / M-\left[3(M-1)^{2}-S(S+1)\right] /(M-1)\right] \\
& \pm\left(D B^{2} / 32 G^{2} K\right)\left(A^{2} / K^{2}-1\right)\left(3 \cos ^{2} \phi-1\right)\left[\left[3 M^{2}-S(S+1)\right] / M\right. \\
&\left.-\left[3(M-1)^{2}-S(S+1)\right] /(M-1)\right]+\left(B^{2} / 8 G^{2}\right)\left(A^{2} / K^{2}-1\right) \\
& \times\left[1-\left(D \sin ^{2} \phi\right) / 8 K\right]\left[S(S+1)-M^{2}+M-1\right] \\
&-\left(B^{2} / 16 G^{2}\right)(A / K+1)^{2} \\
&-\left\{\left[D^{4} A^{4} B^{4} \sin ^{4}(4 \phi)\right] / 256 G^{4} K^{8}\right\}\left[\left[3 M^{2}-S(S+1)\right] / M\right]^{2} \\
& \times\left\{\left[3(M-1)^{2}-S(S+1)\right] /(M-1)\right\}^{2}\left[I(I+1)-m^{2} \mp 2 m-2\right] \\
&\left.\mp\left[\left(Q^{\prime} \sin ^{2} \phi\right) / 8 K\right][1 / M-1 /(M-1)]\right] \tag{6}
\end{align*}
$$

where
$C_{ \pm}^{2}=[S(S+1)-M(M-1)][I(I+1)-m(m \pm 1)][I(I+1)-(m \pm 1)(m \pm 2)]$.

3. Comparison with previous results

The expression for the intensity of the $\Delta m=-2$ transition given by equation (6) above differs significantly from that obtained from the operator expression (equation (4)) of Mialhe et al (1977). The reason for the discrepancies between the two results could not be established because the complete SH used by Mialhe et al (1977) to derive the operator expressions was not mentioned. The present result (equation (6)) contains all the second-order terms reported by Bleaney and Rubins (1961) whereas that of Mialhe et al (1977) does not. The present result (equation (6)) contains the second-order terms of Golding et al (1972) and Subramanian and Misra (1989) as well.

Operator expression for the forbidden HF transition, $\Delta m=2$, is not reported by Mialhe et al (1977). Consequently, no comparison with their result was possible. However, equation (6) is in agreement with the second-order expressions of Bleaney and Rubins (1961) and Subramanian and Misra (1989).

4. Illustrative example

The intensity expression given by equation (6) above is now compared with the experimental values on Mn^{2+} for $\mathrm{Al}_{2} \mathrm{O}_{3}$ reported by Mialhe et al (1977). In order to accomplish this, the klystron frequency must be known, which is not reported by Mialhe et al (1977). Therefore, it had to be estimated using a least-squares procedure (Subramanian and Cheung 1990). It became apparent during the computation that the fit between the theoretical expression (cquation (4)) of Mialhe et al (1977) and the corresponding curves drawn by them (their figure 2) was very poor. Since the angular variation in the intensity of the forbidden HF transition, $\Delta m=2$, predicted from Bir's (1964) theory has also been given by Mialhe et al, it was decided that this curve should be used in order to estimate the klystron frequency. The theoretical expression for the intensity needed for this fitting procedure was derived from Bir (1964) and is given by

$$
\begin{equation*}
I=K\left|w_{M, M-1}\right|^{2}\left|P_{m, m+2}^{I}(\mu)\right|^{2} \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
w_{M, M-1}= & \mathcal{K}\left\{1+\left(|\rho|^{2} / G^{2}\right)\left[3 M(M-1)-S(S+1)+\frac{3}{2}\right]\right. \\
& -\left(|\lambda|^{2} / 4 G^{2}\right)[4 S(S+1)-3]+\rho(2 M-1) / G \\
& \left.-\frac{3}{4} \lambda^{2}(2 M-1)^{2} / G^{2}+\left(\sigma \rho / G^{2}\right)[S(S+1)-M(M-1)-1]\right\} \tag{8}
\end{align*}
$$

and

$$
\begin{align*}
& P_{-1 / 2,3 / 2}^{5 / 2}(\mu)=-\frac{1}{4}(1-\mu)(1+\mu)^{1 / 2}(1+5 \mu) \tag{9a}\\
& P_{1 / 2,1 / 2}^{5 / 2}(\mu)=2^{-3 / 2}(1+\mu)^{1 / 2}\left(5 \mu^{2}-2 \mu-1\right) \tag{9b}\\
& \mu_{M, M-1}=1-\left(9|\lambda|^{2} / 2 G^{2}\right)[1+S(S+1) / 3 M(M-1)]^{2} \tag{9c}
\end{align*}
$$

This procedure resulted in an excellent fit between the angular variation of the line intensity calculated using equations (7)-(9) above and the corresponding curve drawn by Mialhe et al. The best-fit klystron frequency was then estimated to be 9.49 GHz . This value of the klystron frequency, together with the reported values of $D=207.4 \mathrm{G}, A=-85.1 \mathrm{G}, B=-83.7 \mathrm{G}$ and $Q^{\prime}=0.87 \mathrm{G}$ (Mialhe et al 1977), was used in equation (6) to compute the intensity. The angular variation in the intensity of the forbidden HF transition $|M-1, m+2\rangle \leftrightarrow|M, m\rangle$ so determined is shown in figure 1. For comparison, the intensity variations predicted by Bleaney and Rubins (1961) and Bir (1964) are also shown in the same figure.

Figure 1. Intensity of the forbidden HF transition $\left.\left.\left|-\frac{1}{2}, \frac{3}{2}\right\rangle \leftrightarrow \right\rvert\, \frac{1}{2},-\frac{1}{2}\right\}$ for Mn^{2+} in $\mathrm{Ad}_{2} \mathrm{O}_{3}$ as a function of the angle θ between the external Zeeman field and the z principal axis: curve a, based on equation (6) of the present paper; curve b, according to Bleaney and Rubins (1961); curve c, variation predicted by Bir (1964); *, experimental points from Mialhe et al (1977).

As may be seen from figure 1, the experimental values reported by Mialhe et al (1977) are in much better agreement with the intensity calculated using equation (6) above than that predicted by Bleaney and Rubins (1961). This would seem to indicate that the third-order contributions from the nuclear spin operator as well as the quadrupole term (not considered by Bleaney and Rubins) are important in computing the intensity of the forbidden HF transitions. The intensity calculated using the method of Bir is also seen to be compatible with the experimental values for angles where data are available. Bir's theory is known to give good agreement with experiment in those cases where the crystal-field splitting is much larger than the HF splitting (Bir et al 1965, Jain et al 1983). The advantage of the present method is that it is valid even when the crystal-field and HF terms are of comparable magnitude.

5. Conclusion

The intensity calculated using the complete SH gives better agreement with experimental data than that predicted by the second-order perturbation calculations of Bleaney and Rubins. Third-order contributions coming from the nuclear spin operator and
the quadrupole term are found to be quite significant in interpreting the intensity of forbidden HF transitions.

Acknowledgments

This work was supported by the Canadian DND ARP (Grant FUHCF). One of us (SS) is grateful to Dr Sushil K Misra of Concordia University, Montreal, for valuable discussions.

References

Abragam A and Bleaney B 1970 Electron Paramagnetic Resonance of Transition Ions (Oxford: Clarendon)
p 174
Bir G 1964 Sov: Phys.-Solid State 61966
Bir G L, Butikov E I and Sochava L S 1965 Son: Phys-Solid State 61966
Bleaney B and Rubins R S 1961 Proc. Phys. Soc. 77103
Golding R M, Newman R H, Rae A D and Tennant W C 1972 J. Chem. Phys. 571912
Jain V K, Seth V P, Malhotra R K and Yadav S K 1983 Phys. Status Solidi b 119659
Landau L D and Lifschitz E M 1965 Quantum Mechanics 2nd edn (Reading, MA: Addison-Wesley) p 132
Mialhe P 1979 Phys. Status Solidi b 93187
Mialhe P and Erbeia A 1972 Solid State Commun 101133

- 1973a Phys. Rev: B 74061
- 1973b J. Phys. C: Solid State Phys. 61965

Mialhe P, Kassis H and Quedec P 1977 J. Phys. C: Solid State Phys. 10 L381
Misra S K, Mbaebic K and Subramanian S 1989 J. Phys. Chem Solids 501157
Misra SK and Upreti G C 1987 Magn Reson Rev. 121
Subramanian S and Cheung C Y 1990 J. Phys.: Condens. Matter 210501
Subramanian S and Misra S K 1989 J. Phys.: Condens. Matter 19483
Weil J A 1987 Electronic Magnetic Resonance of the Solid State (Ottawa: Canadian Society for Chemistry) p 1

